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Abstract—A .new multiple classifier approach for spectral-
spatial classification of hyperspectral images is proposed. Several
classifiers are used independently to classify an image. For
every pixel, if all the classifiers have assigned this pixel to the
same class, the pixel is kept as a marker, i .e., a seed of the
spatial region, with the corresponding class label. We propose
to use spectral-spatial classifiers at the preliminary step of the
marker selection procedure, each of them combining the results
of a pixelwise classification and a segmentation map. Different
segmentation methods based on dissimilar principles lead to
different classification results. Furthermore, a minimum spanning
forest is built, where each tree is rooted on a classification -driven
marker and forms a region in the spectral -spatial classification:
map. Experimental results are presented for two hyperspectral
airborne images. The proposed method significantly improves
classification accuracies, when compared to previously proposed
classification techniques.

Index Terms—hyperspectral images, classification, segmenta-
tion, multiple classifiers, minimum spanning forest

1. INTRODUCTION

Hyperspectral imaging is a relatively recent technique in
remote sensing. Acquired remotely by airborne or space-
borne sensors, hyperspectral data are comprised of hundrends
of spatially co-registered images corresponding to different
spectral. channels [1], [2]. Figure 1 illustrates the structure
of a hyperspectral image. Every pixel is presented as a B-
dimensional feature vector across the wavelength dimension,
called the spectrum of the material in this pixel. This rich
information in every spatial location increases the capability
to distinguish different physical materials. Thus, hyperspec-
tral imagery opens new perspectives for image classification,
which is an important task for a wide variety of applications
(precision agriculture, monitoring and management of the
environment, security issues).

However, such a large number of spectral channels, usually
coupled with limited availability of reference data ', presents
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^ By reference data, we mean manually labeled pixels which are used for
training classifiers followed by assessment of classification accuracies.

pixel vector x;

Fig. 1. Structure of a hyperspectral image.

challenges to image analysis. While pixelwise classification
techniques process each pixel independently without consid-
ering information about spatial structures [3], [4], [S], [6],
further improvement of classification results can be achieved
by considering spatial dependencies between pixels, i.e., by
performing spectral-spatial classification [7], [S], j91, [101,
[11], [12].

Segmentation techniques, partitioning an image into holno-
geneous regions with respect to some criterion of interest
(called homogeneity criterion, e.g., intensity or texture), are
powerful tools for defining spatial dependencies [13]. In
previous works, we have distinguished spatial structures in
the hyperspectral image by performing unsupervised segmen-
tation [12], [14], [15]. Watershed, partitional clustering and Hi-
erarchical SEGmentation (HSEG) techniques have been used
for this purpose. Segmentation and pixelwise classification
were applied independently, then results were combined using
a majority voting rule (see Figure 2). Thus, every region from
a segmentation map was considered as an adaptive homo-
geneous neighborhood for all the pixels within this region.
The described technique led to a signification improvement
of classification accuracies and provided more homogeneous
classification maps, when compared to classification tech-
niques using local. neighborhoods in order to include spatial.
information into a classifier.



An alternative way to get accurate segmentation results
consists in performing a marker-controlled segmentation [13],
[16]. The idea behind this approach is to select for every spatial
object one or several pixels belonging to this object (called a
region seed, or a marker of the corresponding region) and to
grow regions from the selected seeds, so that every region in
the resulting segmentation map is associated with one region
seed. The markers of regions can be chosen either manually, or
automatically. Recently we have proposed to use probability
estimates obtained by the pixelwise Support Vector Machines
(SVM) classification in order to select the most reliable
classified pixels as markers, i.e., seeds of spatial regions [17].
Furthermore, image pixels were grouped into a Minimum
Spanning Forest (MSF'), where each tree was rooted on a
classification-derived marker. The decision to connect a pixel,
which was not vet in the forest, to one of the trees in the forest
was based on its similarity to one of the adjacent pixels already
belonging to the forest. By assigning the. class of each marker
to all the pixels within the region grown from this marker, a
spectral-spatial classification trap was obtained. The described
technique led to a significant improvement of classification
accuracies when compared to previously proposed methods.
The drawback of this method is that the choice of markers
strongly depends on the performances of the selected pixelwise
classifier (e.g., the SVM classifier in our previous work [17]).

In this work, we aim to mitigate the dependence of the
marker selection procedure from the choice of a pixelwise clas-
sifier. This can be achieved by using not a single classification
algorithm for marker selection, but an ensemble of classifiers,
i.e., multiple classifiers. For this purpose, several individual
classifiers must be chosen and combined within one system in
such a way that the complementary benefits of each classifier
are used, while their weaknesses are avoided.

In this paper, a new marker selection method based on a
multiple classifier (W) system is proposed. Several classifiers
are used independently to classify an image. Furthermore, a
marker map is constructed by selecting the pixels assigned
by all the classifiers to the same class. We propose to use
spectral-spatial classifiers in the preliminary step of the marker
selection procedure, each of thetas combining the results
of a pixelwise classification and one of the unsupervised
segmentation techniques (see Figure 2). By using spectral-
spatial classifiers in this step, spatial context in the image is
taken into account, and classification maps are more accurate
when compared to pixelwise classification traps. This leads to
more accurate marker selection results. The proposed marker
selection method is incorporated into a new iultiple Spectral-
Spatial Classification (MSSC) scheme (MSSC-MSF) based
on the construction of an MSF from region markers.

In order to assess the importance of spectral-spatial ap-
proaches for marker selection, we have also implemented a
;'Multiple Classification scheme (MGMSF). Here, spectral-
spatial classification maps are replaced by the maps obtained
using pixelwise classification techniques. Finally, a marker
map is computed and an MSF from the selected markers is
constructed,

Although the classification approach proposed in this paper
has been designed for hyperspectral data, the method is general
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Fib. 2. Example of spectral-spatial classification using majority voting within
segmentation regions.

and can be applied for other types of data as well. Two hyper-
spectral airborne images are used to demonstrate experimental
results: an image recorded by the Reflective Optics System
Imaging Spectrometer (ROSIS) over the University of Pavia,
Italy, and an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image acquired over Northwestern Indiana's Indian
Pines site [18].

The paper is organized as follows. In the next section, the
multiple classifier approach is briefly discussed. Section III
describes the proposed classification scheme. Experimental
results are discussed in Section IV, Finally, conclusions are
drawn in Section V.

11. MULTIPLE CLASSIFIER APPROACH

The traditional approach for a pattern recognition problem
is to search for the individual algorithm giving the best
possible classification performances. However, in many cases,
the classification accuracy can be improved by using an
ensemble of classifiers, or multiple classifiers. This is due
to the fact that although one of the classification algorithms
would yield the best performances, the sets of pixels (patterns
in general) misclassified by the different algorithms would not
necessarily overlap. Thus, the aim of an MC system is to
determine an efficient combination method that makes use of
the complementary benefits of each classifier, while tackling
the individual. drawbacks [19], [20], [21].



rspectrai image	 Pixelwise
(B bands)	 classification

Watershed
segmentation

Majority voting
within segmentation

regions
map of markers

Majority votingConstruction of
within segmentation	 Marker selection	 minimum spanning

regions	 forest

Segmentation by
EM for Gaussian
mixture resolving

9 
HSEG	 Majority voting	

/classification
Spectral-span

se mentation	 within segmentation 	 map

Fig,. 3. Flow-char€ of the proposed MSSC-MST-' classification scheme.

classifiers

Fig_ 4. Schematic diagram of a multiple classifier system.

A schematic representation of an MC system is given in
Figure 4. An important issue for an efficient MC system is
that the individual classifiers should be independent. More
precisely, the classifiers should not agree with each other when
they misclassify a pixel [20]. The complementary properties
of the different classifiers selected for the MC system should
ensure to a certain extent this requirement.

Another important issue is the rule for combining the indi-
vidual classifiers (i.e., combination function). The individual
classifier outputs, such as class labels and possibly posterior
probabilities, are typically combined by voting rules, belief
functions, statistical. techniques, the Dempster-Shafer evidence
theory, and other schemes [ 19]. For a given pixel, if all the
classifiers agree on the same class k, the evident combination
rule consists in assigning this pixel to the class k in the
final classification crap. On the other side, when individual
classifiers disagree in assigning the given pixel, the procedure
of final decision snaking is not that straightforward, and
different combination functions may yield different results. A
typical result of the MC system is a final classification snap,
where each pixel has a unique class label. This type of MC
systems has been previously used for remote sensing image
classification [21], [22], [23].

In this paper, we propose to address the combination rule
issue in the following way; Accordin g to the exclusionary rule,

only the pixels where all the classifiers agree, i.e., the most
reliable pixels, are kept in the classification snap. The rest
of the pixels are further classified by constructing an MSF
rooted on the "reliable" pixels, i.e., by incorporating the spatial
inforanation into classification.

Coming back to the first issue for designing an MC system,
different individual classifiers must be chosen. For instance,
standard pixelwise classification algorithms can be be used
for this purpose, such as SVM, Maximum likelihood (ML),
k-Nearest Neighborhood (k-N,V) methods ( 

'
parametric and non-

parametric techniques, based on different principles). We have
used these individual techniques in the MC-MSF classification
scheme. Furthermore, we propose to use spectral-spatial clas-
sifiers as individual classifiers for the MC system ( AW-MSF

classification scheme), each of them combining the results of
a pixelwise classification and one of the unsupervised seg-
mentation techniques. Different segmentation methods based
on dissimilar principles lead to different classification results.
The use of spectral-spatial classifiers yields more accurate
classification maps, when compared to those obtained by
performing pixelwise classification,

111. PROPOSED CLASSIFICATION SCHEME

The flow-chart of the proposed MSSC—IW5F classification
method is depicted in Figure 3. At the input a f3-band

hyperspectral .image is given, which can be considered as
a set of rt pixel. vectors X = {x3 c RB , j = 1, 2, ..... n}.
Classification consists in assigning each pixel to one of the K
classes of interest. In the following, each step of the proposed
procedure is described.

Segmentation can be defined as an exhaustive partitioning
of the input image into regions, each of which is considered to
be homogeneous with respect to some criterion of interest. We
have investigated the use of three techniques for hyperspectral
image segmentation, as described hereafter.



A. Watershed segmentation

Watershed transformation is a powerful morphological ap-
proach to image segmentation which combines region growing
and edge detection. The watershed is usually applied to the
gradient function, and it divides an image into regions, so that
each region is associated with one minimum of the gradient
image [24].

The extension of a watershed technique to the case of
hyperspectral images has been investigated in [15], [25]. In
this paper, we present watershed results, obtained by the
scheme we proposed and described in [I5]: First, a one-band
Robust Color Morphological Gradient (RCMG) [261 for the
hyperspectral image is computed.

For each pixel vector x r let X[x^,x ,• x'] be a set of
e vectors contained within a structuring element E (i.e., the
pixel xF, itself and e — 1 neighboring pixels). A 3 x3 square
structuring element with the origin in its center is typically
used. The Color Morphological Gradient (CMG), using the
Euclidean distance, is computed as:

('14" GE(X13 ) = max X,, — vl 2), (1)
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i.e., the maximum of the distances between all pairs of vectors
in the set x. One of the drawbacks of the CMG is that it is very
sensitive to noise. To overcome the problem of outliers, the
KCMG has been proposed [26]. The scheme to make a CMG
robust consists of removing the two pixels that are furthest
apart and then finding the CMG of the remaining pixels. This
process can be repeated several times until a good estimate of
the gradient is obtained.

Thus, the RC44G, using the Euclidean distance, can be
defined as:

RCX1Gf-_; (x1,)	 max	 { Jf xn __. xl ! l2},	 (2)i . j cCY _ RE I,,

where RE 1,. is a set of r vector pairs removed. If E is a
3 x3 square structuring element, r _ _ I is recommended [26].

Furthermore, watershed transformation is applied on the
gradient image, using a standard algorithm [27]. As a result,
the image is partitioned into a set of regions, and one subset of
watershed pixels, i .e., pixels situated on the borders between
regions. Finally, every watershed pixel is assigned to the
neighboring region with the "closest" median z (the distance
between the vector median of this region and the watershed
pixel is minimal).

B. Segmentation by expectation maximization

The Expectation Maximization (EM) algorithm for the
Gaussian mixture resolving belongs to the group of partitional
clustering techniques [ 14], [29]. The use of partitional cluster-
ing for hyperspectral image segmentation has been discussed
in [14]. Clustering aims at finding groups of spectrally similar
pixels. We assume that pixels belonging to the same cluster are
drawn from a multivariate Gaussian probability distribution.

2A standard vector median 1281 for the region S — is, c. L am , j =
I , 2....,1 is defincd as sv.,; = arg znin,, 	 r-	 !l s — sj ll1 1

Each image pixel can be statistically modelled by the following
probability density function:

C,
p(x) _ E -,0, (x ; A. EC)	 (3)

c7—i

where C is the number of clusters, cc,, & [0 1] is the mixing
proportion (weight) of cluster c with Y:', w„ = 1, and
6(p, E) is the multivariate Gaussian density with mean u
and covariance matrix E:

1	 1
exp{— (x —. µ,)' Ee '(x -- !-r _) j, (4)(27)-11/2 JE,11/2

The parameters of the distributions ^i) = {C, E,,; c =
1, 2 1 _, C} are estimated by the EM algorithm, as described
in [14]. An upper bound on the number of clusters, which
is a required input parameter, is recommended to be chosen
slightly superior to the number of classes.

When the algorithm converges, the partitioning of the set
of image pixels into clusters is obtained. However, as no
spatial information is used during the clustering procedure,
pixels with the same cluster label can form a connected
spatial region, or can belong to disjoint regions. In order to
obtain a segmentation map, a connected components labeling
algorithm [3€I] is applied to the output image partitioning
obtained by clustering.

The total number of parameters to be estimated by the EM
algorithm is P = (B(B + 1)J2 + B- I)C + 1, where B is
a dimensionality of feature vector's. If the value of B is large,
P may be quite a large number. This may cause the problem
of the covariance matrix singularity or inaccurate parameter
estimation results. In order to avoid these problems, we pro-
pose to previousiy apply a feature reduction, using the method
of piecewise constant function approximations (PCFA) [31],
which has shown good performances for hyperspectral data
feature extraction.

C. R-fSEG segmentation

The Hierarchical image SEGmentation (HSEG) algorithm
is a segmentation technique based on iterative hierarchical
step-wise optimization region growing method. Furthermore,
it provides a possibility of merging non-adjacent regions by
spectral clustering [32].

The following outline of the HSEG algorithm is based on
the description given in [33], [32]:

1) Initialize the segmentation by assigning for each pixel
a region label. If a pre-segmentation is provided, label
each pixel according to the pre-segmentation. Otherwise,
label each pixel as a separate region.

2) Calculate the dissimilarity criterion value between all
pairs of spatially adjacent regions.

3) Find the smallest dissimilarity criterion value
dissinz_val and set thmsh_val equal to it. Then
merge all pairs of spatially adjacent regions with
dissi.m_val = thre h_val.



4) If a parameter S,^rtr > 0.0, merge all pairs of spa-
tially non-adjacent regions with dissi.rra val < S-Wght
thresh-val.

5) If convergence is not achieved, go to step (2).

In order to reduce computational demands, a Recursive
divide-and-conquer approximation of HSEG (RHSEG) has
been developed. The NASA-Goddard RHSEG software pro-
vides an efficient implementation of the RHSEG algorithm.

When determining most similar pair of regions, we propose
to choose the standard Spectral Angle Mapper (SAM) between
the region mean vectors and as the dissimilarity criterion [32].
The SAM measure between u, and u, (uz, uj E R')
determines the spectral similarity between two vectors by
computing the angle between them. It is defined as

.s
b̀ A.'II (>l, ; u j ) m= arcCOfi	 z , Sb=2 U40p,

``	 , S o^^^	 ro B
!mil,—I D'i	 f)=I jb

(S)

The optional parameter S,,, ght tunes the relative importance
of spectral clustering versus region growing. If S ,,ghr = 0.0,
only merging of spatially adjacent regions is performed. If
0.0 C S :ytas, < 1.0, merging between spatially adjacent
regions is favored compared to merging of spatially non-
adjacent regions by a factor of 1.0 1'S,, vi,t . As discussed
in [34], the optimal parameter 5,,;,r,. t can be chosen based on
a priori knowledge about information classes contained in the
image. If some classes have very similar spectral responses,
we recommended to choose S ,. f,r,,t = 0.0 or close to this
value 3 . Otherwise, we recommend increasing the possibility
of merging spatially non-adjacent regions. If 5,,,,,,, > 0.0,
labeling of connected components has to be applied after
RHSEG in order to obtain a segmentation map where each
spatially connected component has a unique label.

RHSEG provides as output a hierarchical sequence of
image partitions. In this sequence, a particular object can
be represented by several regions at finer levels of details,
and can be assimilated with other objects in one region at
coarser levels of details. This hierarchical sequence allows
flexibility in choosing the appropriate level of detail for the
segmentation map. When training data is available, it is a
simple process to quantitatively evaluate the segmentation
results at each hierarchical level versus the training data to

select the appropriate level of detail. Otherwise an appropriate
level of segmentation detail can be chosen interactively with
the program HSEGVie-,er [32], or an automated method,
tailored to the application, can be developed such as explored
in [35].

D. Pixelwise classification
Independent of the previous steps, a pixelwise classification

of the hyperspectral image is performed. We propose to use
an SVM classifier for this purpose. Other pixelwise classifiers
could be used. However, SVM perform extremely well in

'The analysis reporzod in this paper was performed with version l.d© of
the RHSEG software. The recently released version t.50 of RHSEG produces
similar segmentation results, except that it can exhibit improved results for
larger values of S, F,r especially for data sets, carataining classes with mostly
dissimilar spectral responses.

classifying high-dimensional data when a limited number of
training samples are available [S], [36]. We refer the reader to
[5] 1 [37] for details on SVM technique. This step results in a
classification map, where each pixel has a unique class label.

E. Majority voting within segmentation regions

Each of the obtained unsupervised segmentation maps is
combined with the pixelwise classification map using the
majority voting principle: For every region in the segmentation
map, all the pixels are assigned to the most frequent class
within this region (see an illustrative example in Figure 2).
Thus, q segmentation maps combined with the pixelwise
classification Snap result in q spectral-spatial classification
Snaps (since we propose to use three different segmentation
techniques, in this particular case q = 3).

F; Marker selection

This step consists of computing a map of markers, using
spectral-spatial classification maps from the previous step and
exclusionary rule: For every pixel, if all the classifiers agree,
the pixel is kept as a marker, with the corresponding class
label. The resulting map of m markers contains the most
reliably classified pixels.

G. Construction of a Minimum Spanning Forest

In the final step, image pixels are grouped into an MSF
rooted on the selected markers [17]. Each pixel is considered
as a vertex v V of an undirected graph G =- (V, E, W),
where V and E are the sets of vertices and edges, respectively,
and W is a Snapping of the set of the edges E into R *. Each
edge ei,i E E of this graph connects a couple of vertices i
and j corresponding to the neighboring pixels. Furthermore,
a weight w j is assigned to each edge c-;, j , which indicates
the degree of dissimilarity between two vertices (i.e., two
corresponding pixels) connected by this edge. We propose to
use an S-neigbborhood and the SAM measure for computing
weights of edges, as described in [17].

Given a graph G = (V., E, W), the MSF rooted on a set of
m distinct vertices {ti, .— t,,,,} consists in finding a spanning
forest F* = (V EFm) of G. such that each distinct tree of F*
is grown from one root t.;, and the sum of the edges weights
of F* is minimal [38]

F^ _7 ar,g mill	 Fez, J	 (€s)
F E SF'

EE

where SF is a set of all spanning forests of G rooted on

In order to obtain the MSF rooted on rrt markers cor-
responding to the vertices t i , i == 1, rrt., an additional
root vertex r is added and is connected by the null-weight
edges to the vertices 1,. The minimum spanning tree of the
constructed graph induces an MSF in G, where each tree is
grown on a vertex ta; the MSF is obtained after removing
the vertex r. Prim's algorithm can be used for building the
MSF (see Algorithm. 1) [39]. The efficient implementation of



Algorithm I Prim's Algorithm

Require: Connected graph G = f V, E, W)
Ensure: Tree T' — (V', E', W-)

V* =_ {v}, v is an arbitrary, vertex from V
while V' -/ V do

Choose edge c-i j E E with minimal weight such that
iEV' and jcV'
V,—.V*U{j)
Ira % = E. U {f' ,11

end while

the algorithm using a binary thin-heap is possible [40], the
resulting time complexity of the algorithm is D(!E 1og^V^),
Finally, a spectral-spatial classification map is obtained by
assigning the class of each marker to all the pixels grown
from this marker.

IV. EXPERIMENTAL RESULTS AND DiscUSS10N

'wo different hyperspectral images were used for the ex-
periments, with different contexts (one urban area and one
agricultural area) and recorded by different sensors (ROSIS
and AVIRIS airborne imaging spectrometers). These data sets
and the corresponding results are discussed in the next two
sections.

A. Cfassifrcotion ref the University of'Pavia Image

The University of Pavia image was recorded by the ROSIS
optical sensor over the urban area of the University of Pavia,
Italy. The image is 610 x 340 pixels, with a spatial resolution
of 1.3 m/pixel. The number of data channels in the acquired
image is 115 (with a spectral range from 0.43 to 0.86 arm). The
12 most noisy channels have been removed, and the remaining
103 bands were used for the experiments. Nine classes of
interest are considered, which are detailed in Table 1. Figure 5
shows a three-band false color image and the reference data.
The training and test sets are composed of 3921 and 40002
pixels, respectively. More information about the image, with
the number of training and test samples for each class can be
found in [14],

The segmentation of the considered image was performed,
using the three different techniques discussed in the previous
section. For the EM algorithm, the maximum number of
clusters was chosen equal to 10 (typically slightly superior to
the number of classes). Before applying the EM technique, a
feature extraction on the original 103-band image was applied,
using the method of PCFA [31 ] to get a 10-band image Y up
Pixels from the training set were used for selecting features.
The method produced an averaging of the following groups
of adjacent spectral channels: 1-4, 5-10, 11-24, 25-35, 36-43,
44-68, 69-72, 73-75, 76-79, 80-103.

For the RHSEG algorithm we chose S,„ g rzr m-= 0.1 since
the image of this urban area contains classes with mostly
dissimilar spectral responses. A segmentation reap at an ap-
propriate level of segmentation detail was chosen interactively
with the program IISEGViewer. The obtained watershed, EM

and RIISEG segmentation traps contained 11802, 22549 and
7575 regions, respectively.

The multiclass pairwise SVM classification, with the Gaus-
sian Radial Basis Function (RBF) kernel, of the original image
was performed, with the parameters chosen by fivefold cross
validation: C = 128, ^l = 0125. The results of the pixelwise
classification were combined with the segmentation results,
using the majority voting approach. Finally, the marker selec-
tion (see Figure 5(g); 132521, i.e., 64% of pixels were selected
as markers) and the construction of an MSF were performed,
resulting in the 1ISSC-1fST' spectral-spatial classification map
depicted in Figure 5(h).

Table i summarizes the global and class-specific accuracies
of the pixelwise SVM, segmentation plus majority voting
(TFH+MTV. EV-4- V, RI3SEG+,VV for three segmentation
techniques, respectively) and the proposed JVfSSC-M.SF clas-
sification methods. The following measures of accuracy were
used: Overall Accuracy (OA is the percentage of correctly
classified pixels), Average Accuracy (AA is the mean of class-
specific accuracies, i.e., the percentage of correctly classified
pixels for each class) and kappa coefficient (r:, is the per-
centage of agreement,i.e., correctly classified pixels, corrected
by the number of agreements that would be expected purely
by chance [41]). In order to compare performances of the
proposed technique with the previously proposed methods,
we have also included results of the well-known ECHO
spatial classifier [7], as well as the results obtained using the
construction of an MSF from the probabilistic SVM-derived
markers followed by majority voting within connected regions
(SVMMSF+MT) [17].

In addition, we assessed the importance of spectral-spatial
approaches for marker selection. For this purpose we replaced
the WH+MV, EMA-AflT RIISEG+,1IY classification maps by
three maps obtained using standard pixelwise classification
techniques (we call this modified scheme an MC-,WSF clas-
sification method). SVM, Maximum Likelihood (ML) and
3-Nearest 'Neighborhood (3-NN, using the SAM distance)
methods were used for this purpose. The ML and the 3-
NN techniques were applied on the 10-band image Y 1, p
feature vectors. The accuracies of the modified MC-MSF
classification, as well as pixelwise classification results are
given in Table 1.

As can be seen from Table 1, the SVM method gives
the highest accuracies among all the pixelwise classification
techniques. All the spectral-spatial approaches yield higher
classification accuracies when compared to pixelwise methods.
The proposed MC approach for marker selection improves
accuracies, when compared to those obtained by classification
techniques used in the preliminary step of the marker selection
procedure, both for the MC-MSF and MSSC-MSF methods.
The best global and the best class-specific accuracies for most
classes are achieved by applying the proposed MSSC-MSF
method. According to the results of the McNemar's test [42],
the MSSC-MSF classification map is significantly more accu-
rate when compared to those obtained by other classification
approaches, using 5% level of significance. In this case, the
overall accuracy is improved by 16.9 percentage points and the
average accuracy is improved by 10.3 percentage points, when



Fig. 5. Uniuersity of Pavia image. (a) Three-band color composite. (b) Reference data; - 	 E-z.z- ,	 :_:. tro <, a ctL^ sl c-' Mare so'; % bitumen,
'bricks and	 . (c) SVM pixelwise classification map. (d) ECHO classification Inap, (e) SVAWSF+MV classification map. (f) MC--USF classification
map. (g) ;VfSSC-AfSF marker map. (h) USSC-MSF classification map,

TABLE I
CI,ASS]F1CAT10N AccuRACIE,, IN PE^CEN fAGi: FOR TiV University Of Pavia IMAf L; OVERP.LL AC'cu p. Ac.v ((3A), AVERAGL, ACCE?RA('Y (AA), KAPPA

COLFF1C11°:N1 (N) AND CLASS-SP7xmc AccURACIES.

3-NN3 ML SVM ECHO WH HMV EM+MV RI1S> G
MV

SVMMSF
+MV

MC
MSF

N1SSC-
MSF

OA 68.38 79.06 81.01 87.58 85.42 94.00 93.85 91.08 87.98 97.90
AA 77.21 84.85 88.25 92.16 91.31 93.13 97.07 94.76 92.05 98.59
V 59.85 72.90 75.86 83.90 81.30 91.93 91.89 88.30 8432 97.18
Asphalt 64.96 76.43 84.83 87.98 93.64 90.10 94.77 93.16 87.01 98.00
Meadows 63.18 75.99 70.79 81.64 75,09 95.99 89.32 85.65 83,24 96.67
Gravel 62.31 64.57 67.16 76.91 66.12 82.26 96.14 89.15 75.37 97.80
Trees 95.95 97.08 97.77 99.31 98.56 85.54 98.08 91.24 198.97 98.83
Metal sheets 99.73 99.91 99.46 99.91	 i 99.91 100 99.82 99.91 €	 99.91 99.91
Bare soil 7742 70.03 92.83 93.96 97.35 96.72 99.76 99.91 93.24 100
Bitumen 8167 ' 90.62 90,42 92.97^ 96.23 91.85 100 ^	 98.57 95.11. 99.90
Bricks 77.08 90.10 92.7$ 97.35 97.92 98.34 99.29 E	 99.05 97.00 99.76
Shadows 91.57 98.87 9$.11 99.37 96.9$ 97.36 96.48 96.23 j	 98.62 06.48
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compared to the SVM classification.. All the class-specific
accuracies are higher than 96%. Only the accuracy for the
class shadows, representing small spatial structures, is slightly
reduced when compared to the SVM results (the drawback of
applying spectral-spatial classification to small structures was
discussed for instance in [141). The MSSC-MSF classification
accuracies are much higher than the MC-MSF accuracies.
Furthermore, the presented classification accuracies are higher
than all previous results we have found in the literature for the
same data.

Figure 5 depicts the MC-MSF and .,VSSC--MSF classification
maps; as well as the SVM, ECIIO and SViWVSF+MV classi-
fication maps given for comparison. In Figure 5(g) [MSSC-

MSF marker map], it can be seen that the marker pixels,
i.e., the most reliable classified pixels, are typically located
at the center of spatial structures, while borders of structures
are under a high risk of being misclassified. The MSSC-
MSF classification map [see Figure 5(h)] contains much more
homogeneous regions when compared to the maps obtained by
other pixelwise and spectral-spatial approaches. These results
prove the importance of the use of MC systems and spatial
information throughout the classification procedure.

B. Classification of the Indian Pines Image

The proposed scheme was also tested on the Indian Pines
image of a vegetation area, acquired by the AVIRIS sensor
over the Indian Pines site in Northwestern Indiana. The image
has spatial dimensions of 145 by 145 pixels, with a spatial
resolution of 20 iiVpixel- Twenty water absorption bands (104-
108, 150-163, 220) have been removed [1.8], and a 200-
band image was used for the experiments. The reference data
contain sixteen classes of interest, which represent mostly
different types of crops and are detailed in Table 11. A three-
band false color image and the reference data are presented
in Figure 6. We have randomly chosen 50 samples for each
class from the reference data as training samples, except for
classes "alfalfa", grass/Pasture-mowed" and "oats". These
classes contain a small number of samples in the reference
data. Therefore, only 15 samples for each of these classes
were chosen randomly to be used as training samples. The
remaining samples composed the test set.

Segmentation of the Indian Pines image was performed,
using the three discussed techniques. For the EM technique,
the upper bound on the number of classes was chosen equal to
17, and a feature reduction has been previously applied, using
the method of PCFA [31] to get a 10-band image YIN, The
following groups of bands were averaged: 1-18, 19-36, 37-53,

54-57, 58-61, 62-75, 76-81, 82-99, 100-140, 141-200.
Since some classes have very similar spectral responses in

the Indiana Pines image (for instance, three classes of corn and
threeclasses of soybeans), we set 52^,^Ist - 0.0 for the RHSEG
method. A segmentation map at the relevant level of hierarchy
was chosen with the program I-ISEGViewer. The resulting;
watershed, EM and RHSEG segmentation maps contained
1277, 3832 and 823 regions, respectively.

A pixelwise classification on the 200-band image was
performed, using the multiclass one versus one SVM classifier

fig. 5. Indian Pines image. (a) Three-band color composite. (b) Reference
data: € or^, -no titl, Cm :r-rr+.r_ ts't Co -; Soybe ,acs-no till,
soybeans-clean till,	 ras ,Pas taa, Gmssrtrcc ,
i'f 4 k^-; -.aFC	 .CIS°., woods,

(c) sVM pixelwise classification reap. (d) SYW.VSF MV classification
trap. (c) UC-MSF classification map. (i) MSSC-USF classification map,

with the Gaussian RBF kernel. The optimal parameters C
and ^r were chosen by fivefold cross validation: C = 128,

-- 2 -'. After the segmentation results were combined with
the pixelwise classification map, the marker selection (14409,
i.e., 68% of pixels were selected as markers) and the MSF
construction were applied, as described in the previous section.

Table lI gives the global and class-specific accuracies of
the pixelwise SVM, segmentation followed by majority voting
and the proposed MSSC-MSF classification techniques. The
performances of the proposed approach are compared with
those obtained by the ECHO and SVMMSF--MCA methods,
as described in the previous section. Finally, the MC-MSF
classification was applied in the same was as for the previous
data set.

From the table, the similar conclusions as for the previous
data set can be derived. The SVM classification yields the
best accuracies among all the applied pixelwise methods.
Spectral-spatial classification accuracies are always higher
when compared to pixelwise accuracies. The proposed MC
method succeeds in combining several classification results



TABLE 11
CLASSI F ICATION Accu'RACIL5 IN PLR(TNTA61, FOR THE Indian Pines IMAGE: 0VLRALL ACcLRAGY (OA), AVLRAGE AccURACY (AA), KAPPA

CoI=sFlCIT N T (K) AND CLASS- SPrci tC Acccxncies.

3-NN ML SVM ECHOECHO WH+MV EMl- V
RHSEG

+MV
SVMMSF

+MV
MC-
MSF

MSSC-
^	 MSF

OA 66.27 /5.41 78.17 ?	 82.64 86.63 83.60 90.86 91.80 86.66 92.32
AA 76.77 79.61 85.97 83.75 91.61 85.34 93.96 94.28 i	 92.58 94.22

j 62.04: 72.25 75.33 80.38 84.83 81.43 89.56 90.64 84.82 91.19
Corn-no till	 3 41,84 71.39 78.18 83.45 94.x2 89.09 90.46 93.21 83.82 89.74
Corn-min till 62.24 63.01 69.64 75.13 78.06 75.64 83.04 96.56 74.62 86.99
Corn 73.37 185.87 91.85 92.39	 € 86.59 65.22 95.65 95.65 96.74 95.11
Soybeans-no till 67.43 79.43 82.03 90.10 96.30 88.14 92.06 93.91 93.36 91,84
Soybeans-min till 53.91 52.65 58.95 64.14 68.82 65.67 84.04 81.97 f	 72.91 89.16
Soybeans-clean till 64.72 85,99 87.94 89.89 90.78 95.04 95.39 97.16 95.92 97.34
Alfalfa 84.62 48.72 74.36 48.72 94.87 94.87 92.31 94.87 94.87 94.87
Grass/pasture	 1 86.35 j	 93.51 92.17 94.18 95.08 93.96 94.41 94.63 98.21 94.63
Grass/trees 91.97 94.69 91.68 96.27 97.99 96.41 97,56 97.27 97.70 97.85
Grassrpasture-mowed 100 36 . 36 100 36.36 loo 100 100 100 100 100
Hay-windrowed 95.67 97.72 97.72 97.72 99.54 99.32 99.54 99.77 99.54 99.77
Oats 80.00: 100 loo 100 too 40.00 100 1110 100 100
Wheat	 ; 99.38 98.15 98.77 98.15 99.38 98.77 98.15 99.38 99.38 99.38
Woods	 I 86.17 95.42 93.01 94.21 97.11 96.70 98.63 99.68 98.47 99.44
Bldg-Grass-"free-Drives 45.15 73.03 61.52 81.52 69.39 66.67 82.12 68.79 77.88 73.64
Stone-steel towers 95.56 97.78 97.78 97.78 95.56 too 100 95.56 97.78 97.78

for further improvement of accuracies, The MSSC-MSF yields
the best OA, kappa coefficient and most of the class-specific
accuracies. The AA is only slightly (non-significantly) lower
when. compared to that obtained by the recently proposed
SVMMSF-4,--,VV method. Following the results of the McNe-
mar's test, the MSSGMSF and SVMMSF' MV accuracies are
not significantly different, using 5% level of significance.
These two techniques significantly outperform other classifi-
cation approaches.

Figure 6 shows the SVM, MC-AISF, MSSC-MSF and
St'MMSFj-MV classification maps. As can be seen, the MSSC-
MSF map contains much more homogeneous spatial struc-
tures, when compared to the SVM and MC-MSF maps, and
is comparable with the SVjVTVSF- MV map. Again, spectral-
spatial marker-based techniques yielded the most accurate
classification maps.

Although for the Indian Pines image, the MSSC-MSF and
SVMMSF- JVY methods yield similar results, here we stress
the advantages of the proposed MSSGMSF approach versus
the previous one for spectral-spatial classification:

Robustness: While for the STMVSF-t-MV method the
marker selection strongly depends on the performances
of the selected pixelwise classifier, the MC approach mit-
igates this dependence. Since in the MSSC-MSF scheme,
different segmentation maps are combined with one pix-
elwise classification map, the choice of the classifier is
also important. However, if in the SVALVSF+,VY method
a pixel was wrongly classified with a high probability,
it will yield a wrong marker. In the new approach, the
majority voting within segmentation regions can correct
the misclassification result for a particular pixel, before
the marker map is built.
Computational Complexity: In the SVMMSF4,,Vr
method, the probabilistic pixelwise SVM classification
part is the most time-consuming [43]. In the MSSC-1kfSF

approach, SV1V1 classification is performed without the
computation of probability estimates; this reduces the
pixelwise classification part execution time. The unsu-
pervised segmentation techniques are much less time-
consuming when compared to the SVM classification.
Furthermore, their efficient implementations are available,
and they can be executed in parallel at the same time
with the SVM classification.. As a conclusion, the efficient
implementation of the proposed MSSC-MSF approach
is possible, which would run faster than the previously
proposed MSSC-MSF method.

V. CONCLUSION'S

Ilyperspectral sensors capture images in hundreds of narrow
spectral channels. The detailed spectral signatures for each
spatial location provide rich information about an image scene,
leading to better discrimination between physical materials
and objects. However, interpretation of these high-dimensional
signatures is a challenging task. Although pixelwise classi-
fication techniques have given high classification accuracies
when dealing with hyperspectral data, the incorporation of
the spatial context into classification procedures yields further
improvement of the accuracies.

In this paper, a new method for spectral-spatial classifi-
cation of hyperspectral images based on multiple classifiers
is proposed. First, a marker map is constructed by selecting
the pixels assigned by several spectral-spatial classifiers to the
same class. This ensures a robust and reliable selection, Then,
an MSF rooted on the selected markers is built. Experimental
results demonstrated that the proposed method improves clas-
sification accuracies, when compared to previously proposed
classification schemes, and provides classification maps with
homogeneous regions.

In conclusion, the proposed methodology succeeded in
taking advantage of multiple classifiers and the spatial and the
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spectra[ information simultaneously for accurate hyperspectral
image classification. The method yields accurate results for
different data sets, i.e., data containing large spatial structures
and/or small and complex structures, with spectrally dissim-
ilar anchor spectrally confusing classes. Furthermore, its the
efficient implementation is possible.

While performing especially well for classification of ho-
mogeneous regions, the proposed approach has a drawback
common to most of spectral-spatial techniques: It produces
a smoother classification snap when compared to pixelwise
ones, and therefore it risks impairing results near the borders
between regions (where mixed pixels 4 are often encountered)
or in textured areas. Spectral unmixing techniques [44] can be
used for accurate analysis of region borders, while segmenta-
tion in the sense of texture [45] can be applied for textured
regions.

In the future, we will further explore the integration of
spectral-spatial approaches in MC systems for accurate and ro-
bust classification of hyperspectral images. Since the incorpo-
ration of the spatial information in classification significantly
improves accuracies, it is of interest to further investigate per-
formances of the proposed spectral-spatial approaches when a
very limited number of training samples is available.
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